Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients.

Identifieur interne : 000129 ( Main/Exploration ); précédent : 000128; suivant : 000130

Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients.

Auteurs : Barry Osmond [Oman] ; Wah Soon Chow [Australie] ; Barry J. Pogson [Australie] ; Sharon A. Robinson [Australie]

Source :

RBID : pubmed:32172734

Descripteurs français

English descriptors

Abstract

Plants adjust the relative sizes of PSII and PSI antennae in response to the spectral composition of weak light favouring either photosystem by processes known as state transitions (ST), attributed to a discrete antenna migration involving phosphorylation of light-harvesting chlorophyll-protein complexes in PSII. Here for the first time we monitored the extent and dynamics of ST in leaves from estimates of optical absorption cross-section (relative PSII antenna size; aPSII). These estimates were obtained from in situ measurements of functional absorption cross-section (σPSII) and maximum photochemical efficiency of PSII (φPSII); i.e. aPSII = σPSII/φPSII (Kolber et al. 1998) and other parameters from a light induced fluorescence transient (LIFT) device (Osmond et al. 2017). The fast repetition rate (FRR) QA flash protocol of this instrument monitors chlorophyll fluorescence yields with reduced QA irrespective of the redox state of plastoquinone (PQ), as well as during strong ~1 s white light pulses that fully reduce the PQ pool. Fitting this transient with the FRR model monitors kinetics of PSII → PQ, PQ → PSI, and the redox state of the PQ pool in the 'PQ pool control loop' that underpins ST, with a time resolution of a few seconds. All LIFT/FRR criteria confirmed the absence of ST in antenna mutant chlorina-f2 of barley and asLhcb2-12 of Arabidopsis, as well as STN7 kinase mutants stn7 and stn7/8. In contrast, wild-type barley and Arabidopsis genotypes Col, npq1, npq4, OEpsbs, pgr5 bkg and pgr5, showed normal ST. However, the extent of ST (and by implication the size of the phosphorylated LHCII pool participating in ST) deduced from changes in a'PSII and other parameters with reduced QA range up to 35%. Estimates from strong WL pulses in the same assay were only ~10%. The larger estimates of ST from the QA flash are discussed in the context of contemporary dynamic structural models of ST involving formation and participation of PSII and PSI megacomplexes in an 'energetically connected lake' of phosphorylated LHCII trimers (Grieco et al. 2015). Despite the absence of ST, asLhcb2-12 displays normal wild-type modulation of electron transport rate (ETR) and the PQ pool during ST assays, reflecting compensatory changes in antenna LHCIIs in this genotype. Impaired LHCII phosphorylation in stn7 and stn7/8 accelerates ETR from PSII →PQ, over-reducing the PQ pool and abolishing the yield difference between the QA flash and WL pulse, with implications for photochemical and thermal phases of the O-J-I-P transient.

DOI: 10.1071/FP18054
PubMed: 32172734


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients.</title>
<author>
<name sortKey="Osmond, Barry" sort="Osmond, Barry" uniqKey="Osmond B" first="Barry" last="Osmond">Barry Osmond</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; and Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia; and Corresponding author. Email: osmond.barry@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
</affiliation>
</author>
<author>
<name sortKey="Chow, Wah Soon" sort="Chow, Wah Soon" uniqKey="Chow W" first="Wah Soon" last="Chow">Wah Soon Chow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601</wicri:regionArea>
<wicri:noRegion>ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pogson, Barry J" sort="Pogson, Barry J" uniqKey="Pogson B" first="Barry J" last="Pogson">Barry J. Pogson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601</wicri:regionArea>
<wicri:noRegion>ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Robinson, Sharon A" sort="Robinson, Sharon A" uniqKey="Robinson S" first="Sharon A" last="Robinson">Sharon A. Robinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522</wicri:regionArea>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:32172734</idno>
<idno type="pmid">32172734</idno>
<idno type="doi">10.1071/FP18054</idno>
<idno type="wicri:Area/Main/Corpus">000062</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000062</idno>
<idno type="wicri:Area/Main/Curation">000062</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000062</idno>
<idno type="wicri:Area/Main/Exploration">000062</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients.</title>
<author>
<name sortKey="Osmond, Barry" sort="Osmond, Barry" uniqKey="Osmond B" first="Barry" last="Osmond">Barry Osmond</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; and Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia; and Corresponding author. Email: osmond.barry@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
</affiliation>
</author>
<author>
<name sortKey="Chow, Wah Soon" sort="Chow, Wah Soon" uniqKey="Chow W" first="Wah Soon" last="Chow">Wah Soon Chow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601</wicri:regionArea>
<wicri:noRegion>ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pogson, Barry J" sort="Pogson, Barry J" uniqKey="Pogson B" first="Barry J" last="Pogson">Barry J. Pogson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601</wicri:regionArea>
<wicri:noRegion>ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Robinson, Sharon A" sort="Robinson, Sharon A" uniqKey="Robinson S" first="Sharon A" last="Robinson">Sharon A. Robinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522</wicri:regionArea>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Functional plant biology : FPB</title>
<idno type="eISSN">1445-4416</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chlorophyll (MeSH)</term>
<term>Fluorescence (MeSH)</term>
<term>Photosystem II Protein Complex (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Thylakoids (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chlorophylle (MeSH)</term>
<term>Complexe protéique du photosystème II (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Fluorescence (MeSH)</term>
<term>Thylacoïdes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Chlorophyll</term>
<term>Photosystem II Protein Complex</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fluorescence</term>
<term>Plant Leaves</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chlorophylle</term>
<term>Complexe protéique du photosystème II</term>
<term>Feuilles de plante</term>
<term>Fluorescence</term>
<term>Thylacoïdes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants adjust the relative sizes of PSII and PSI antennae in response to the spectral composition of weak light favouring either photosystem by processes known as state transitions (ST), attributed to a discrete antenna migration involving phosphorylation of light-harvesting chlorophyll-protein complexes in PSII. Here for the first time we monitored the extent and dynamics of ST in leaves from estimates of optical absorption cross-section (relative PSII antenna size; aPSII). These estimates were obtained from in situ measurements of functional absorption cross-section (σPSII) and maximum photochemical efficiency of PSII (φPSII); i.e. aPSII = σPSII/φPSII (Kolber et al. 1998) and other parameters from a light induced fluorescence transient (LIFT) device (Osmond et al. 2017). The fast repetition rate (FRR) QA flash protocol of this instrument monitors chlorophyll fluorescence yields with reduced QA irrespective of the redox state of plastoquinone (PQ), as well as during strong ~1 s white light pulses that fully reduce the PQ pool. Fitting this transient with the FRR model monitors kinetics of PSII → PQ, PQ → PSI, and the redox state of the PQ pool in the 'PQ pool control loop' that underpins ST, with a time resolution of a few seconds. All LIFT/FRR criteria confirmed the absence of ST in antenna mutant chlorina-f2 of barley and asLhcb2-12 of Arabidopsis, as well as STN7 kinase mutants stn7 and stn7/8. In contrast, wild-type barley and Arabidopsis genotypes Col, npq1, npq4, OEpsbs, pgr5 bkg and pgr5, showed normal ST. However, the extent of ST (and by implication the size of the phosphorylated LHCII pool participating in ST) deduced from changes in a'PSII and other parameters with reduced QA range up to 35%. Estimates from strong WL pulses in the same assay were only ~10%. The larger estimates of ST from the QA flash are discussed in the context of contemporary dynamic structural models of ST involving formation and participation of PSII and PSI megacomplexes in an 'energetically connected lake' of phosphorylated LHCII trimers (Grieco et al. 2015). Despite the absence of ST, asLhcb2-12 displays normal wild-type modulation of electron transport rate (ETR) and the PQ pool during ST assays, reflecting compensatory changes in antenna LHCIIs in this genotype. Impaired LHCII phosphorylation in stn7 and stn7/8 accelerates ETR from PSII →PQ, over-reducing the PQ pool and abolishing the yield difference between the QA flash and WL pulse, with implications for photochemical and thermal phases of the O-J-I-P transient.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32172734</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1445-4416</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>46</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Functional plant biology : FPB</Title>
<ISOAbbreviation>Funct Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients.</ArticleTitle>
<Pagination>
<MedlinePgn>567-583</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1071/FP18054</ELocationID>
<Abstract>
<AbstractText>Plants adjust the relative sizes of PSII and PSI antennae in response to the spectral composition of weak light favouring either photosystem by processes known as state transitions (ST), attributed to a discrete antenna migration involving phosphorylation of light-harvesting chlorophyll-protein complexes in PSII. Here for the first time we monitored the extent and dynamics of ST in leaves from estimates of optical absorption cross-section (relative PSII antenna size; aPSII). These estimates were obtained from in situ measurements of functional absorption cross-section (σPSII) and maximum photochemical efficiency of PSII (φPSII); i.e. aPSII = σPSII/φPSII (Kolber et al. 1998) and other parameters from a light induced fluorescence transient (LIFT) device (Osmond et al. 2017). The fast repetition rate (FRR) QA flash protocol of this instrument monitors chlorophyll fluorescence yields with reduced QA irrespective of the redox state of plastoquinone (PQ), as well as during strong ~1 s white light pulses that fully reduce the PQ pool. Fitting this transient with the FRR model monitors kinetics of PSII → PQ, PQ → PSI, and the redox state of the PQ pool in the 'PQ pool control loop' that underpins ST, with a time resolution of a few seconds. All LIFT/FRR criteria confirmed the absence of ST in antenna mutant chlorina-f2 of barley and asLhcb2-12 of Arabidopsis, as well as STN7 kinase mutants stn7 and stn7/8. In contrast, wild-type barley and Arabidopsis genotypes Col, npq1, npq4, OEpsbs, pgr5 bkg and pgr5, showed normal ST. However, the extent of ST (and by implication the size of the phosphorylated LHCII pool participating in ST) deduced from changes in a'PSII and other parameters with reduced QA range up to 35%. Estimates from strong WL pulses in the same assay were only ~10%. The larger estimates of ST from the QA flash are discussed in the context of contemporary dynamic structural models of ST involving formation and participation of PSII and PSI megacomplexes in an 'energetically connected lake' of phosphorylated LHCII trimers (Grieco et al. 2015). Despite the absence of ST, asLhcb2-12 displays normal wild-type modulation of electron transport rate (ETR) and the PQ pool during ST assays, reflecting compensatory changes in antenna LHCIIs in this genotype. Impaired LHCII phosphorylation in stn7 and stn7/8 accelerates ETR from PSII →PQ, over-reducing the PQ pool and abolishing the yield difference between the QA flash and WL pulse, with implications for photochemical and thermal phases of the O-J-I-P transient.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Osmond</LastName>
<ForeName>Barry</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; and Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia; and Corresponding author. Email: osmond.barry@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chow</LastName>
<ForeName>Wah Soon</ForeName>
<Initials>WS</Initials>
<AffiliationInfo>
<Affiliation>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pogson</LastName>
<ForeName>Barry J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, ACT 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Robinson</LastName>
<ForeName>Sharon A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Australia</Country>
<MedlineTA>Funct Plant Biol</MedlineTA>
<NlmUniqueID>101154361</NlmUniqueID>
<ISSNLinking>1445-4416</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="Y">Chlorophyll</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="Y">Photosystem II Protein Complex</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020524" MajorTopicYN="N">Thylakoids</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32172734</ArticleId>
<ArticleId IdType="pii">FP18054</ArticleId>
<ArticleId IdType="doi">10.1071/FP18054</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Oman</li>
</country>
</list>
<tree>
<country name="Oman">
<noRegion>
<name sortKey="Osmond, Barry" sort="Osmond, Barry" uniqKey="Osmond B" first="Barry" last="Osmond">Barry Osmond</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Chow, Wah Soon" sort="Chow, Wah Soon" uniqKey="Chow W" first="Wah Soon" last="Chow">Wah Soon Chow</name>
</noRegion>
<name sortKey="Pogson, Barry J" sort="Pogson, Barry J" uniqKey="Pogson B" first="Barry J" last="Pogson">Barry J. Pogson</name>
<name sortKey="Robinson, Sharon A" sort="Robinson, Sharon A" uniqKey="Robinson S" first="Sharon A" last="Robinson">Sharon A. Robinson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000129 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000129 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32172734
   |texte=   Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32172734" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020